【主要论著】 在Nature Commun.、Phys. Rev. Lett.、Phys. Rev. B、J. Chem. Phys.、J. Chem. Theory Comput.、Phys. Chem. Chem. Phys.、J. Phys. Chem. C等国际学术期刊上发表论文50余篇,他引1600余次。 代表性论文: [49] Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH-? H. Z. Ma, J. Feng, F. Jin, M. Wei, C. B. Liu and Y. C. Ma Nanoscale 10, 15624 (2018)
[48] Variation of optical spectra of water clusters with size from many-body Green's function theory M. Wei, F. Jin, T. W. Chen and Y. C. Ma J. Chem. Phys. 148, 224302 (2018)
[47] Mediating both valence and conduction bands of TiO2 by anionic dopants for visible- and infrared-light photocatalysis T. W. Chen, G. K. Liu, F. Jin, M. Wei, J. Feng and Y. C. Ma Phys. Chem. Chem. Phys. 20, 12785 (2018)
[46] Passivated codoping can improve the solar-to-hydrogen efficiency of graphitic carbon nitride J. Feng, H. Z. Ma, T. W. Chen, C. B. Liu and Y. C. Ma J. Phys. Chem. C 122, 7296 (2018)
[45] Quasiparticle band structures of defects in anatase TiO2 bulk T. W. Chen, Y. N. Hao and Y. C. Ma Chin. J. Chem. Phys. 30, 771 (2017)
[44] Giant piezoelectric effects in monolayer group‑V binary compounds with honeycomb phases: A first-principles prediction H. B. Yin, J. W. Gao, G. P. Zheng, Y. X. Wang and Y. C. Ma J. Phys. Chem. C 121, 25576 (2017)
[43] Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study H. B. Yin, G. P. Zheng, J. W. Gao, Y. X. Wang and Y. C. Ma Phys. Chem. Chem. Phys. 19, 27508 (2017)
[42] Novel carbon nanotubes rolled from 6,6,12-graphyne: Double Dirac points in 1D material D. C. Yang, R. Jia, Y. Wang, C. P. Kong, J. Wang, Y. C. Ma, R. I. Eglitis and H. X. Zhang J. Phys. Chem. C 121, 14835 (2017)
[41] The mechanism for the formation of OH radicals in condensed-phase water under ultraviolet irradiation F. Jin, M. Wei, C. B. Liu and Y. C. Ma Phys. Chem. Chem. Phys. 19, 21453 (2017)
[40] A new energy transfer channel from carotenoids to chlorophylls in purple bacteria J. Feng, C. W. Tseng, T. W. Chen, X. Leng, H. B. Yin, Y. C. Cheng, M. Rohlfing and Y. C. Ma Nature Commun. 8, 71 (2017)
[39] Electronic structures of rutile (011)(2X1) surfaces: A many-body perturbation theory study G. K. Liu, T. W. Chen, X. B. Liu, F. Jin, S. L. Yuan and Y. C. Ma J. Chem. Phys. 146, 124702 (2017)
[38] Influence of functional groups on water splitting in carbon nanodot and graphitic carbon nitride composites: a theoretical mechanism study J. Feng, G. K. Liu, S. L. Yuan and Y. C. Ma Phys. Chem. Chem. Phys. 19, 4997 (2017)
[37] 多体格林函数方法 马玉臣,刘成卜 《中国学科发展战略 —— 理论与计算化学》 第九章,科学出版社(2016) [36] Optical properties of acene molecules and pentacene crystal from many-body Green's function method X. Leng, J. Feng, T. W. Chen, C. B. Liu and Y. C. Ma Phys. Chem. Chem. Phys. 18, 30777 (2016) [35] GW method and Bethe-Salpeter equation for calculating electronic excitations X. Leng, F. Jin, M. Wei and Y. C. Ma WIREs Comput. Mol. Sci. 6, 532 (2016) (invited review)
[34] Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalize graphene hybrid nanosheets Y. Jiang, M. Wei, J. K. Feng, Y. C. Ma and S. L. Xiong Energy Environ. Sci. 9, 1430 (2016)
[33] Structures and photoelectric properties of five benzotrithiophene isomers-based donor-acceptor copolymers N. Cheng, Y. C. Ma, Y. J. Liu, C. Q. Zhang and C. B . Liu Spectrochim. Acta A 159, 262 (2016)
[32] Photocatalytic properties of g-C6N6/g-C3N4 heterostructure: A theoretical study D. M. Liang, T. Jing, Y. C. Ma, J. X. Hao, G. Y. Sun and M. S. Deng J. Phys. Chem. C 120, 24023 (2016)
[32] Electronic and optical properties of B- and/or In-doped GaAs calculated using many-body Green's function theory D. M. Liang, X. Leng and Y. C. Ma Chem. Res. Chin. Univ. 32, 996 (2016)
[31] Quasiparticle band structures and optical properties of graphitic carbon nitrides D. M. Liang, X. Leng and Y. C. Ma Acta Phys. Chim. Sin. 32, 1967 (2016)
[30] 多体格林函数方法对g-CN激发态特性的研究 梁冬梅,冷霞,马玉臣 中国科学:化学 46, 126 (2016)
[29] Excitons and Davydov splitting in sexithiophene from first-principles many-body Green function theory X. Leng, H. B. Yin, D. M. Liang and Y. C. Ma J. Chem. Phys. 143, 114501 (2015)
[28] Charge-transfer excited states in aqueous DNA: Insights from many-body Green function theory H. B. Yin, Y. C. Ma, J. L. Mu, C. B. Liu and M. Rohlfing Phys. Rev. Lett. 112, 228301 (2014) [27] Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory H. B. Yin, Y. C. Ma, X. T. Hao, J. L. Mu, C. B. Liu and Z. J. Yi J. Chem. Phys. 140, 214315 (2014) [26] Photoluminescence of single-walled carbon nanotubes: The role of Stokes shift and impurity levels J. L. Mu, Y. C. Ma, H. B. Yin, C. B. Liu and M. Rohlfing Phys. Rev. Lett. 111, 137401 (2013)
[25] 研究激发态的多体格林函数理论 马玉臣,刘成卜 化学进展 24, 981 (2012)(综述, 量子化学专辑) [24] Excited states of dicyanovinyl-substituted oligothiophenes from many-body Green functions theory B. Baumeier, D. Andrienko, Y. C. Ma and M. Rohlfing J. Chem. Theory Comput. 8, 997 (2012) [23] Silicon Donors at the GaAs(110) surface: A first principles study Z. Yi, Y. C. Ma and M. Rohlfing J. Phys. Chem. C 115, 23455 (2011) [22] Excited states of the negatively charged nitrogen-vacancy color center in diamond Y. C. Ma, M. Rohlfing and A. Gali Phys. Rev. B 81, 041204 (Rapid Communication) (2010) [21] Modeling the excited states of biological chromophores within many-body Green function Theory Y. C. Ma, M. Rohlfing and C. Molteni J. Chem. Theory Comput. 6, 257 (2010) [20] Quasiparticle band structures and lifetimes in noble metals using Gaussian orbital basis sets Z. J. Yi, Y. C. Ma, M. Rohlfing, V. M. Silkin and E. V. Chulkov Phys. Rev. B 81, 125125 (2010) [19] Diabatic states of a photoexcited retinal chromophore from ab initio many-body perturbation theory M. S. Kaczmarski, Y. C. Ma and M. Rohlfing Phys. Rev. B 81, 115433 (2010) [18] Excited states of biological chromophores studied using many-body perturbation theory: Effects of resonant-antiresonant coupling and dynamical screening Y. C. Ma, M. Rohlfing and C. Molteni Phys. Rev. B 80, 241405 (Rapid Communication) (2009) [17] Optical excitation of deep defect levels in insulators within many-body perturbation theory: The F center in calcium fluoride Y. C. Ma and M. Rohlfing Phys. Rev. B 77, 115118 (2008) [16] Simulation of interstitial diffusion in graphite Y. C. Ma Phys. Rev. B 76, 075419 (2007) [15] Quasiparticle band structure and optical spectrum of CaF2 Y. C. Ma and M. Rohlfing Phys. Rev. B 75, 205114 (2007) [14] Defect-induced spin deterioration of La0.64Sr0.36MnO3: Ab initio study K. P. Wang, Y. C. Ma and K. Betzler Phys. Rev. B 76, 144431 (2007) [13] Reactions and clustering of water with silica surface Y. C. Ma, A. S. Foster and R.M. Nieminen J. Chem. Phys. 122, 144709 (2005) [12] Hydrogen-induced magnetism in carbon nanotubes Y. C. Ma, P. O. Lehtinen, A. S. Foster and R. M. Nieminen Phys. Rev. B 72, 085451 (2005) [11] Nitrogen in graphite and carbon nanotubes: Magnetism and mobility Y. C. Ma, A. S. Foster, A. V. Krasheninnikov and R. M. Nieminen Phys. Rev. B 72, 205416 (2005). [10] B and N ion implantation into carbon nanotubes: Insight from atomistic simulations J. Kotakoski, A. V. Krasheninnikov, Y. C. Ma, A. S. Foster, K. Nordlund and R. M. Nieminen Phys. Rev. B 71, 205408 (2005) [9] Magnetic properties of vacancies in graphene and single-walled carbon nanotubes Y. C. Ma, P. O. Lehtinen, A. S. Foster and R. M. Nieminen New J. Phys. 6, 68 (2004). [8] Irradiation-induced magnetism in graphite: A density functional study P. O. Lehtinen, A. S. Foster, Y. C. Ma, A. V. Krasheninnikov, and R. M. Nieminen Phys. Rev. Lett. 93, 187202 (2004). [7] Condensation and phase transition of hydrogen molecules confined in single-walled carbon nanotubes Y. Y. Xia, M. W. Zhao, Y. C. Ma, X. D. Liu, M. J. Ying and L. M. Mei Phys. Rev. B 67, 115117 (2003). [6] Hydrogen storage capacity in single-walled carbon nanotubes Y. C. Ma, Y. Y. Xia, M. W. Zhao, M. J. Ying Phys. Rev. B 65, 155430 (2002). [5] Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure Y. Y. Xia, M. W. Zhao, Y. C. Ma, M. J. Ying, X. D. Liu, P. J. Liu and L. M. Mei Phys. Rev. B 65, 155415 (2002). [4] Exohedral and endohedral adsorption of nitrogen on the sidewall of single-walled carbon nanotubes M. W. Zhao, Y. Y. Xia, Y. C. Ma, M. J. Ying, X. D. Liu and L. M. Mei Phys. Rev B 66, 155403 (2002). [3] Collision of Hydrogen Atom With Single-walled Carbon Nanotube: Adsorption, Insertion, and Healing Y. C. Ma, Y. Y. Xia, M. W. Zhao, M. J. Ying, X. D. Liu and P. J. Liu J. Chem. Phys. 115, 8152 (2001). [2] Effective Hydrogen-storage in Single-wall Carbon Nanotube Y. C. Ma, Y. Y. Xia, M. W. Zhao, R. J. Wang and L. M. Mei Phys. Rev. B 63, 115422 (2001). [1] Growth and defects formation of single-walled carbon nanotubes Y. Y. Xia, Y. C. Ma, Y. L. Xing, Y. G. Mu, C. Y. Tan and L. M. Mei Phys. Rev. B 61, 11088 (2000).
|